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One- dimensional integral equations of the first kind with irregular kernels 
containing a removable logarithmic singularity and a dimensionless, geo - 
metrical or physical parameter A, are considered. The integral equations 
in question appear in the course of investigation of a wide class of mixed li- 

near problems of the theory of elasticity and viscoelasticity (contact prob- 
lems , problems on slits, inclusions and cover plates), hydrodynamics ( li - 
near problems of gliding, flows past slender profiles and surfaces, problems 
of linear supercavitation, etc. ). All methods used in the past to study these 
integral equations are effective when the parameter k is either large, or 

small [ 11. This necessitated the use of more than one method, e. g. “the 

asymptotic method at large A ” and “the asymptotic method at small 3, ‘I, 

to solve a single concrete problem. The present paper gives algorithm which 

are equally effective at all values of the parameter htz(O, co]. 

1. Type8 of the integral equation8 of the mtxod problem8 
under invertfgatlon. Many mixed problems in the two - and three - dimensional 
formulation listed above can be reduced to an integral equation of the first kind of the 
convolution type in a finite interval 

m +ic 

K(t) = -& \ qe-iu’ du (t=?Z$. id = 6 + it (1.2) 
-m’+ic 

Using the properties of the function L (u) we find, that in most cases the problems 

encountered can be divided into two classes [ 21 

a) L (24) = Au + 0 (u”) (u +O) (1.3) 

b) L (U) = (BU)-’ + D-’ t- 0 (u) (I( 49) 

Moreover,inbothcaseswehave,onthestrip I~/<Y,/ol<m,ICI<y, 

L (U) = 1 + 0 (f3-v’a’) (17 i -3 00) (1.4) 

and the function L (u) is regular except at the point u = 0 in the case b ). In (1.3) 
and (1.4) A, B, D, y and Y are constants determined by the specific problems. 
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restrictions imposed on the right - hand side of (1.1) will be shown below. 
By virtue of the condition (1.3) we can write L (u) for the case a) in the form 

L(u) = thAu+G,(u) (1. 5) 

Substituting (1.5) into (1.2) and integrating along the real axis we obtain, by virtue 
of (I.. 4) and the known integral [ 33 

-lI+h+ pfCOS.ydo 
0 

(1.6) 

the following expression for the kernel 255 (t): 

On the basis of (1.4) and the regularity of the unction L (u) in the strip as well as 
the theorems .A and B of [4], we can confirm that N, (t) is regular, as a function 
of the complex variable w = t + is , inthestripIsI<Inf(Y,2A),ItJ(~. 

We also have 

Nr (t) = 0 (e++t) ( 1 t 1 d- 00, x== Inf(~,~)) (I.81 

By virtue of the condition (1.3) for the case b ), we can write the function L (u) in 
the form 

L(u)=cthBzc+ k -!- G, (TV) (1.9) 

Substituting (1.9) into (1.2) and integrating along the real axis, we use (1.4) and 
the relations [ 3 ] 

(1.10) 

taken in the sense of the theory of generalized functions [ 5 ] (C is an undefined con - 
stant) to obtain the following expression for the kernel R (t) : 

K[(t)= -1n 2sh-&l+C--$j-(th-$-&‘i)+N,(t) 
I 

(1.11) 

(I.. 12) 

The plus and minus signs in (1.11) are chosen according to the position of the contour 
of integration in (1.2). As in the previous argument, we can assert that the function 
N, (t) is regular in the strip 

js)<Inf(v,2B, D), jtl<m. 

Moreover, when 1 t 1 -+ 00 , the estimate (1.8) where 3c = Inf (y, n/2B, n/D). 
holds for IV, (t) . 
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Thus the first terms in the expressions for K (t) of the form (1. 7) and (1. 11) re- 
flect fully all basic properties of the kernels of the integral equation (1. I), (1.2) for 

the cases a) and b) for all t E [O, CO). When t .z [O, cm) the remaining terms in 
(1. ‘7) and (1.11) are smooth as much as required. This implies that the exact inver- 
sion of the integral operators 

will give a qualitatively exact description of the behavior of the solutions of (1. I), 
(1.2) for the cases a) and b) and for all values of the parameter h. This can serve as 
the basis for developing an approximate method of solving the integral equations (1. l), 

(1.2) for both cases, which will be equally effective at all values of ii. E (0, 001 . 
The idea of such an approach was outlined in [ 6 J. 

Let us turn our attention to important auxiliary integral equations of the form 

Lrp = “gl @)I L,Fp = ntg, (x) (1. 14) 

We shall limit ourselves to the odd cases, i. e. we shall assume that the functionsgr (x) 
andg? (z)and , therefore, the solutions of (1.14)) are odd (the even cases have their 

own distinguishing features and require a separate consideration. 
Let us perform in (1.14) a change of variables and introduce the corresponding no- 

tation : 

al fjzsz, sh i-x 3% 
a=-, (1.15) 

sh r r=ZAh 
‘p* @) = (CC)-’ cp (Eh g* (4 = g1w 

Equations (1.14) can now be written as a single expression 

(1.16) 

Taking into account the fact that the functions (F* (fi) and g* (a) are odd, we can 
write (1.16) in the form 

Thus the problems of existence and uniqueness of the solution of (1.14) can be studied 
by investigating the same problems for (1.17). 

2, On the Btructure of solution of the integral equations(l.14). 
We shall seek a solution of the integral equation (1.17) in the form 

Fp* (PI = w (B) (1 - B2Yr (2.1) 

With regard to the function CO (a) we shall assume that it belongs to the class,&*” (-1.1) 
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which represents a complete space of functions with the norm 

Next we note that for the integral operator 

a system of eigenfunctions exists closed in L2”s (- 1,l) which consists of the Tchebycheff 
polynomials of the first kind [ 7 ] 

The fact that the system is closed implies that any function w (ol) E L,‘f* (--I, 1) 
can be uniquely represented by the expression [ 8 ] 

(2.3) 

where 2s is a complete space of sequences with the norm 

II f II” = SO f: (f = SJ) 

We assume that the function g* (cc) in (I.. 17) is such thatg*’ (a) E L;Ja(-&I). 
Then the representation 

(2.4) 

will be even more possible for g* (a), ~ubsti~~ng (2. I), (2.3) and (2.4) into (1.17) 
and using (2.2)) we find that 

%z = c&l (2.5) 

Theorem 1. If g*’ (a) E .&a”* (-1, I), then there exists a unique solution 
of the integral equation (1. I.?) such that cp* (8) has the form (2.1) and the function 

u (01) ES L,‘h (-1, I). Moreover S the following correctness relation exists : 

(m = con.%) (2.6) 

which can also be written in the form 

II ‘p* (4 llL‘,*.+ < 9 II g* (4 IIW,,,~ w = co=t) (2.7) 

Here L, (-1,1) is a space of functions absolutely summable for cc & I- 1, il with 
degree p, and WPk (--1,1) is a space of functions the k - th derivatives of which are 

absolutely summable for cz E I---1, 1 J with degree p , 
To prove the theorem, we differentiate (2.4) in a. Taking into account (2.5) and 
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the formulas 

we obtain 

(2.8) 

On the other hand, the function g*’ (a) belonging to the class L;‘* (-I,ljY has the 
following expansion : 

g*’ (a) = 5&G (4 (@J E 12) (2. Ilo> 

Comparing (2.9) with (2. lo), we establish that 

WI = go’ - ‘/a g%‘, osk+l -- g;;k - &,.s’ @at = g;k_1 - g;k+r 

and we can therefore write 

00 

c 
6J>,s = G&o” + 

( 
go’ - g &)2 + E I(&, - &+sY 

,n==o k=l 

+ (g;k,-- g;~,,)zl\<co2g02 +m 29: 

-0 

(2.11) 

The above estimate uses the Cauchy - Buniakowski inequality. The relation (2.11) can 
also be written in the form 

or, by virtue of equivalence of the norms in (2.3), as (2.6). Using the Hdlder in - 
equality, we can easily establish that 

(mZ = const) 

and thus confirm the validity of (2.7). 

Corollary 1. From (2.7) follows the existence of a unique solution q* (4 of 
the integral equation (I, 17) in the class .&,_a (--1, f) for g” (a) 5% w4+,’ (-i,$). 

When we use the results of (2.7), we must also remember that if g* (a)EW’r+,, 

(--1,~), then g* (a)fzz&~(---l,l), OC+<~/~. The validity of the above statement 

can also be confirmed using the Hblder inequality. Here B,p (--1 ,I) is the space of 
functions the k _ th derivative of which satisfies, for 1 a 1 < j., the f-lttrlder inequality 
with the index 0 < p < 1. We also note that if g* (01) E B,” (-- 1,1> and p>O, 
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then,aswasshowninC9],w(a)E~ov(-~,1)andv=~whenIi.(1andv= 
1-O when p = 1, 

Using the facts proved for (1.17) we can now assert that for gi (s) E pjT,+,l (-1, 

1) (i = 1,2), unique solutions of the integral equations (1.14) exist of the form 

toI (xc) ch rx 
a) cpw= ~/ch2r--cch2rz ' 

b) (P(x) = 
@2(X) 

* 2.12) 
ch rz vch 2r - ch 2rx 

where the functions oi (3) e Ls’ip (--1,i) and the correctness relations (2.6) and 
(2.7) hold. If on the other hand gi (3) E B,p (-1,1) and p > 0, then Oi (2) E 

B,* (--1,1) and v = p for p (‘1 and v = 1-O for p = 1. 

The following spectral relations will also be of use. They are obtained from (2.2) 
with (1.15) taken into account, and are 

Returning to the integral equation (1.1) , (1.2) and taking into account the formulas 

(1.7) and (1.11) t (1.12)‘ we can rewrite it in the form 

1 

Hiq = \ 4P(BNi(+)G (i=1,2) 
-1 

Here we have taken into account the fact that in the odd case of the variant b) the 
constant D = 00. If we assume that cp (3) e Lit,, (-4 ,i), then the functions Hi (p 
will be as smooth as required. This follows from the fact proved above that the function 
Ni (t) is regular in some strip of the complex variable plane containing the real axis. 

Using Theorem 1, we can now formulate 

Theorem 2. If the function f (z) e W,+f (-l,l) and solutions of Eqs.(2.14) 
exist in the class L4,,_o (-i,f), then they have the form (2.12) for all values of the 
parameter h E (0, co] and the functions wi (x) E LzQ (-$,I). At the same time, 

if f(z) CYZ B,p (--1,l) and lo, > 0, then 05 (2) E B,” (-1,1) and v =L: l~L(p < 
1) and 2’ = 1-O (p = 1). 

3. Method of orthogonal polynomials. We shall seek the .functions 
oi (E)(i = 1,2) which appear in (2,12), in the form of the following series in 
Tchebycheff polynomials : 

ai (E) = j. @kT2k*l (B) (3. I) 

BY virtue of the properties of functions wi (8) shown in Theorem 2, the series (3.1) 



708 V. M. Aleksandrov and E. V. Kovalenko 

converge on the norm of the space Lgfta (--1 ,i), and the corresponding sequences {Q} 
belong to the space 1,. Let us expand the function j (2) and the regular supplements 
Ni (t) (i = 1,2) to the kernels into the single and dual series respectively, in terms 

of the polynomial systems given above, We obtain 

f @) = j&&c+1 (a) (3.2) 

Ni ft) = mjO j0 emn (h) Tam+, (8) If2~ (a) 

Here and henceforth the functions Q! and p will be given by the formulas (1.15) at 
i = 1 and i = 2 for the cases a) and b) respectively. Using the well known [3 J 

property of orthogonality of the Tchebycheff polynomials, we obtain 

a) q(E, s) = chrEchm, 

By virtue of the properties of the functions f (z), N, (t) and Ns (t) the series (3.21~0~ 
verge uniformly [IO] to those functions at all 1 x 1 < 1, 1 8 1 6; 1 and h > 0. 

Lemma 1. If the function f (IC) f~ IV;+0 (-1,1), then for any solution rp (z) 

of class L4,s+) (- 1,1) of the equation of the form (2.13) there exists a corresponding 

sequence ot numbers ai belonging to the class Zs and satisfying the following infinite 

system of linear algebraic equations: 

a,? = r, - X amemn (12 =O,l,z,...) (3.4) 
??I=0 

Conversely, if the function f (z) G &$.a (-$,1), then every solution {a,) of the sys- 
tem (3.4) belonging to the class 1s has a corresponding solution Q,(X) E ~,,s_s(-1,1) 

of the equation of the form (2. X2), (3.1). 
To prove this lemma, we take into account Theorem 2 and substitute into the 

integral equations (2.13) the functions Q, (4, f (x), N, (t) and N, (t) in the form 
(2.12) t (3.1) and (3.2). Then t using the spectral relations (2.13) and the property of 
orthogonality of the Tchebycheff polynomials we arrive, after certain manipulations, 

at (3.4). The converse procedure is equally easy. 

Lemma 2. We have the following estimates for the coefficients e,, (A) of the 
form (3.3): 
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where D, = max 1 Ni” (t) I, Da = max 1 Ni”’ (t) ( (1 t I< 00, i = 1, 2) 

s n-_ 
1 

[n(n+1)1-‘9 n>,f 
Jh n=O 

To prove this we perform in (3.3) the change of variables 0 = COS $, c11 = Cos cp. 

Then we integrate the resulting equations for e,, (A) twice by parts in cp and once in 
+, and carry out a series of manipulations and estimates to arrive at (3.5). 

The ore m 3, If the function f (2) E Wi+, (--1 ,I), then the operator appearing 
in the right- hand side of (3.4) acts in the space Z,, is completely continuous at all 
A E (0,oo I and is a contraction operator when A > A,,. The constant A, is found 
from the equation 

To prove the theorem we change the variables in the formulas (3.2), according to 
(1.15). Differentiating the resulting relations with respect to a , taking into account 
(2.8) and remembering that f’ (5) E L2"' (-1 ,I), we confirm that the sequence 

{r,> E I,. 
Further, using the estimates (3.5) we can show that when A > 0 , 

(3.7) 

From (3.7) it follows that the operator appearing in the right -hand side of (3.4) acts 
in the space of sequences I, and is completely continuous when h. E (0, 00] [ 8 1. 

Thus the infinite system (3.4) has a unique solution for almost every A. From (3.7) 
we see that, when the relations (3.6) hold, the above operator will be a contraction 

operator in I,. Consequently whenh > A,, a solution of the infinite system (3.4) 

exists in the space 1, , is unique and can be obtained with any degree of accuracy using 
the method of consecutive approximations or a reduction method [ 8 1. We note that the 
infinite system (3.4) can also be written in the form 

a: = f, - i, q&in (3.3) 

a,* = an&,, , CL = % Pm + 1) emn (V 

If the function f (z) E W~+O (-i,i), it can be shown that {fn} E 1, where I, 
is a complete space of sequences with the norm 

Waving obtained the estimates of the type (3.5) for cz* , we can also confirm that the 
operator appearing in the right - hand side of (3.8) acts in the space .J,. It can be 

proved that the infinite system (3.8) is quasi - completely regular when A > 0. If it 
has a bounded solution) then {a,*} E 1,. Some X0* > 0 can be shown such that for 
h > ha* the infinite system (3.8) is completely regular [ 111. 
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For the particular problem discussed in Sect. 5, we have D, := 0.3466, D, = 
0.1883 and the relation (3.6) yields h, = 0.996. Computations show that the re - 

duction method converges for the system (3.4) also when 2-c 3~0. It is important that 
the number of equations in the above system does not exceed, for the given degree of 
accuracy of solution, some value N for all ;i. E (0, co]. 

Having solved the system (3.4). we use the formulas (3.1) and (2. 12) to find the 
solutions of the integral equations (2.14). The coefficient accompanying the sing&+ 
rity in the function cp (z) can be found using the formula 

m 

4, Method of collocation. After performing in the integral equations 
(2.14) the change of variables (1.15)‘ we can write them in the form of a single ex - 

We shall seek the solution of (4.1) in the form (2.1). Taking into account 
relations p = COS y and 0: = cos 8 we obtain the following integral equation 

0 (cos :,) : 

(4.1) 

the 
for 

(4.2) 

Let us construct for the function o (cos y> a Lagrange interpolation polynomial in 
terms of the Tchebycheff nodes [lo] 

Since the function w (COS y) is odd, the polynomial will have the form 

2 
o(cosy) = i ~~~(e"se,)~cos(2n-I)tl,rus(2n-I)y 

S=l ?I=1 

Next we use the formula (2.2) to compute the integral in the left - hand side of (4.2). 
The integral appearing in the right-hand side of (4.2) can be computed using the Gauss 
quadrature formula [ 10 ] _ Substituting the values of the integrals obtained into (4.2) and 
assigning to 6 the following values: 

we obtain the following system of equations for 0 (cos 0,) : 
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(4.3) 

i 

c cos(2n - 1)8, cos~:~~)ej = p tcospjj) 

TZ=L 

Having solved the system (4.3)) we obtain approximate solutions of (2.14) using the 

‘p (X) - 
r JfZchr 

ch rx vch 2r - ch 2rz 
s=1 TI=l 

The convergence of the method with the increasing number of the collocation nodes can 
be proved with the help of the results of [ 121. It must be noted that for the given accu- 
racy of the approximate solution, the number i of nodes does not exceed some value 
i, for h E (0, 001. 

6. Stretching of an slaBtic strip reinforced with a rigid co- 
ver plate of finite length. Let one of the boundaries of an elastic isotropic 
strip with elastic constants *G and Y ( G is shear modulus and v is the Poisson’s ratio) 
of thickness h , be connected to an inextensible, but perfectly elastic plate of length 

Za. We assume that outside the plate the strip boundary is stress - free. The opposite boun- 
dary of the strip lies without friction on a nondeformable support. We also assume that 

the strip is fully coupled to the plate within the region of their contact and ,that thestrip 
is stretched at infinity by the forces P==ph. We seek the tangential stresses r(y) appea- 

ring in the region of contact between the strip and the plate. 
The problem in question can reduced to that of solving an integral equation which, 

in the dimensionless coordinates, will have the form 

L (IL) = 
cl1 2u + 1 

sh2u+2u 

and for the present problem we have, in( 1.3), B = 2, D =z 00. 

An approximate solution of (5.1) for h > 0 can be obtained by one of the methods 
mentioned in Sect. 3 or 4. The necessary values of the function N,(t) were computed on 
a digital computer and are given in Table 1 (N,(r) = exp(-l/znt) for r > 4) 
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Table 3 

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 
- ~~~).~os 415 413 405 394 379 360 339 
t 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
- ivs( t) * 103 291 241 193 151 114 85 62 
t 2.2 2.4 2.6 2.8 3.0 3.5 4.0 
-,‘V,(f)*iOa 45 32 22 16 11 4 2 

Table 2 gives the values of the function V(Z) and of the coefficients accompanying 
the singularity X, computed by both methods given in Sect. 3 and 4, 

Table 2 

v W I 

h z=O.l 1 * r-o.3 1 x=0,5 1 N---0,7 Ix=,9 

2.0 -0.105 -0.321 -0.592 -2.99i -2.090 --1,002 
--o.lO% -0.326 -0.596 -1.007 -2.107 -1.017 

1.0 -0.114 -0.352 -0.626 -1.029 -2.062 -0.982 
-0.113 -9.350 -0.625 -1.023 -2.067 -0.980 

0.5 -0.093 -0.283 -0.526 -0.857 --2.689 ---CO.792 
-0.092 -0.288 -0.524 -0.857 -1.690 -0.790 

the first line giving the results obtained by the method of orthogonal polynomials and 
the second line using the method of collocation, To achieve the accuracy to within the 

second decimal place (in the worst case of h = 1/2)) we must take eight equations in 

the system (3.4) and seven equations in the system (4.3). 
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